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The general form of anisotropic vector functions of vector argument, com-
patible with crystal symmetry, is derived. The desired functions Vi= V' (A)

are represented as V= EEVVZAIP- where PV&W are some fixed
polynomials of the components of the vector A, whose specific form is
indicated for each class of crystal symmetry, and J, are arbitrary functions
of three functionally independent invariants of the vector A relative to

the point group corresponding to this class. The obtained expansions satisfy
the uniqueness and pelyncmialicorrespondenee requirements. The former means

’

that for given polynomials W, the functions / are defined uniquely
by the functions ! ; the latter means that the functions /, are polynomials
of their arguments if the yi are polynomials of the components of the vector
A . These expansions are particularly convenient when the components of the
vector-functions are polynomials of the components of the vector-argument.

1. Pormulation of the problem. Let a vector field A/ operate on a

homogeneous anisotropic continuum with the result that another vector field
Vi=F(4) (1.1)
will originate in the medium.
The anisotropic functions /! are not completely arbitrary; they should
be compatible with the symmetry of the medium{(*).
If the coordinate asystem is subjected to the transformation 2t = 1‘(ik),
where gaxt | 8z¥ ::ai.y.-', , the transformed components of the vectors A

and VY satisfy the relationship.
e VE o= FH (' AY) (1.2

») See[1] and[ 2] for definitions of isotropic and anisotropic tensor
functions and their properties.
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In particular, if the transformation a?k- enters into the point aym-
metry group G of the medium, equalities (1.1) and (1.2) are equivalent.
This is the necessary and sufficient condition for the compatibility of the
vector function Fi with the symmetry of the medium,

Rivlin [3] indicated a method of construction of the functions Fd, which
are compatible with the given point symmetry group ( of the medium. All
linear invariants J1» ...,J;, relative to B should be selected from the
entire rational basis of invariants of two vectors A and B relative to the
group G (it may be found in [4]). Any invariant of the vectors A and B,

which is linear in B, may be represented as

{
Y= DO, (1.3)
A==1

(where (D, are invariants of the vector:A),, and any vector function of the
vector A, which is compatible with the symmetry of the medium, as
1

i oV a7,

=7 = —

oB; 2 B,

A=l 4

For practical application of anisotropic tensor functions it is important

(1.4)

that the following two conditions be satisfied

1) Uniqueness - for a fixed choice of the invariants J, the functions
@, should be defined uniquely by the functions F*.

2) Polynomial corfeapondence - if F1i are polynomials of the components
of the vector A, the functions @, should alsoc be polynomisls of their
arguments.,

The functions K} (A), constructed by Rivlin [ 3], satisfy the second
demand only. The aim herein is to construct anisotropic vector functions
of a vector argument compatible with the crystal symmetry and satisfying
both the mentioned demands(*).

2. Method of solution. As is known [6], an arbitrary invariant @ of

the vector A is written uniquely in one of three ways:

(a) D =f (@1, 93, Pa)
(b) D = f, (@1 Pa» Ps) + %71 (P1) Per P5) (2.1)
3
{c) D = fy @1, P2» Pa) + 3, Voo @1 Doy P3)
=1

*) This problem has been sclved earlier {5] for functions compatible
with the texture symmetries,
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Here @P1s Pos P33 are functionally independent basis invariants of the
vector A, the so-called prinecipal invariants; P, Py, Yo are complementary
basis invariants, i.e., all the remaining invariants in the entire rational
basis; f, Tos fl, fs are arbitrary functions of the principal invariants.
Each of Formulas (2.1) is valid for the crystallographic classes of type
(a), (b), (c), respectively(),

Classes of type {(a)

1, m, mm2, mmm, 4mm, 4/mmm, 3m, 6mm, 62m, 6/mmm, &3m, m3m
Classes of type (b)

2, 2/m, 222, 4, 4/m, 422, 42m, 3, 32, 3m, 6, 6, 6/m, 622, 23, m3, 432
Classes of type (c¢)

1, &, 3
Formula {1.3) becomes ;
(a) ¥ = EAJA
ﬁxl
(b) ¥ = 2 (ot B, ) (2.2)
A=1
! 3
) =3 Aot X veha) N
These formulas may be comhinedax =
L
‘F = };ﬁ);j;\, (23)
A=l

where the notation @ is used for any factor with /,whebher it has the form
J or J. Evidently I, equals [ 2], 4! in ceses (8),(b) and (¢), res-
pectively.

Let f be an analytic function of its arguments. Then

o0 o o0 [ee]
f=lo=20 2 2 R, (017 (92)™ (95)" (2.4)
g=0 Pyl Po==0t D=0

Here f«ﬁ iz a polynomial in the principal invariants of the vector A,
whose degree in A is ¢; tne real coefficients Hp,., are independent
of A . In this case even @ is represented as an infinite series

Yo + %Yo + ¥y  where W, 1is & linear polynomial in B and of power

g in g Evidently N
» ; 3 ? ;% i i ]
Vg = Pl A% 4B, Vi = Py A% A (2.5)

g

*) The international notation of classes of crystal symmetry {see [7],
say) are used here and henceforth.
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Here P iix--»fu is a tensor which is once contravariant, q times
covariant, symmetric in all the convariant induces and invariant relative to
the group G. As is known (8], the number of independent components of such
a tensor is

1 ‘1
LTl T 2 % (=) [iv'] (9) (2.6)

ge6
where ¥V (G) 1is the order of the group (7; v {g) is the trace of the trans-

formation matrix £ from the group () [%,7] (g) is the trace of the ¢th
symmetric Kronecker power of the same matrix [9].

Let the degree of the principal invariants @, P, @3 relative to A
be @, @3 ag.. The homogeneous polynomial [(;) equals the sum of those
members of the triple series (2.4) for which Pitty + Peas + Py = ¢

The number of such members equals the denumerant [ 10)

1 [ qa 1 ]
: = "y | =~ 2.7
D (Q. ai, Gs, @s) q! [dtq (1 —1%) (1 — 1% (1 — 1) Jy—g ( )

If there are P9 invariants of zero degree in A; ry invariants of first
degree in A, . . ., rg invariants of degree K in A, among the invariants @)
then the number of terms of degree ¢ inA in (2.3) for ¥ equals

min (K, q)
] .
nq* = 2} )‘kD (q—ka A1y Q3 33) (2‘8)
k=0
In general, n,* > n,  this means that not all the members of the sum

(2.3) are independent, Let us assumes{hat there exists the expansion
¥ =wif;y +. .. + Onfm (2.9)

all of whose members are linearly independent while, however, satisfying the
demand of polynomial correspondence as does (2.3).

Let Sk be the number of members of the form @,f, in this expansion,
in which the factor @; is of degree k relative to A, The numbers Sk
should satisfy the infinite system of eguations

q
disD (g —k; ar, as, as) = ng (g=0,1,2,...) (2.10)

k=0
Taking into account that D 0; a,, a,, ag) = {, the solution of this

system is easily written down in the recursion form
q—1

So = Ry, sq=ng— 2 D (g—Fk; ax, a3, 85)  (g=1,2,...) (2.11)
k=0
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On the other hand, Sk <_ rx , and 8§ =0, in particular 1f k> K. It
is hence sufficient to find s, s, ..., Sk.

When these numbers have been found, three cases are possible

a) rq=Sg B) re>s.=0, T) Tre>8>0

In case (@) all terms with factors ©® of degree ¢ in A remain in the
expansion (2.10). In case (B} all such terms are discarded. In case @)
it is necessary to discard r; — s; such terms. Terms with such factors
@, as may be represented in the form o = Q, (¢, Pg, Pg)®; + - . . + O
(P1) P2s P3)Om, where w, are factors with remainder terms and Q, (P, 9», Ps)
some polynomials of the principal invariants, should be discarded here.

The expansion (2.9) obtained after having discarded all excess members

in the sum (2.3), and the corresponding Formula,

e m
. dw :
V= >_l ',93}? fh= Z W fu (2.12)
p=1 1 p-=1
solve the posed problem. We write (2.9) and (2.12) as
m m
i )
Y= 2 Wy Bify, V= 2 W yeif, (2.13)
p=1 p=1
The number of members in these sums is M =S, + 8 4 ... 4 sk

On the other hand, a survey of the formulas presented in Section 3 shows
that the number ™ equals 3,6,12, respectively, for groups of types (a),
(b) and (c).

3. The funotions V(A) compatidle with orystal symmetry. Here the

vector-functions of a vector argument in the form

m

V= él Wi @ity
are listed here for all classes of crystal symmetry. The formulas are
written in a rectangular Cartesian XYZ coordinate system with the direc-
tions i, j k. The orientation of the axes relative to the elements of
crystal symmetry agrees with that proposed by the IRE (*), with the excep-
tion of classes 2, m and 2/ m, in which 2(|Z or m|Z, and class §2m, in
which 2{ X, 6|(Z.

The classes for which the principal invariants of the vector are identical

*) See [7], Appendix 2 where the axes are denoted by Ou,, Oz, Oz,
respectively.
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are combined in a series. The designation of that single class of type (a),
which enters into the composition of the series, is ascribed to each series.
The principal invariants of the vector A, i.e., the arguments of the
arbitrary functions f, which agree for all classes of the given series,
are indicated in parentheses after the designation of the serles. For example,
(3.2) means
V=ifi(dy Ay 4,9 + 32 (4 Ay AD + AKf (4, A, 4,2)

Por brevity, the writing of the members which have already appeared in

one of the preceding formulas is denoted by the symbols V (mm2), V (mmm)

ete. For example, (3.4) should be read as

V =kfy + A,i)s + A s + Ayifs+ Aifs -+ AA ko

where fo=t, (4, 4.2, A2 r=1...,86

The symbol X in the formulas for the series 43m and m3m means
summation over the cyclic permutation of the subscripts z,y,2 and the
directions i, j, k.

Series 1 (4., 4,,4,)

Class 1 vV == ify 4 jfa 4 ks (3.1)
Series m (4., 4, A2
Class m V =ifi -+ jla+ AKfs (3.2)
Series mm2 (4,,4,% A}
Class mm2
V =kf1+ A,if2 + A jfs (3.3)
Class 2 V =V (mm2) 4 A jfa+ A jifs + A ki (3.4)
Series mmm (A%, Ay"‘, A%
Class mmm
V =41+ 4,ifs+ 4 kfs (3-5)
Class 222
V =V (mmm) + A A jifs+ A,A,jfs + A A Kfs (3.8)
Class 2/ m
V ==V (mmm) -+ A_jfs + Ayifs + AxAyAzk}'g (3.7)
Class 1

V=V (2/m)+ AKfs + A kfs + Aifs + A Jho + Axd, A ifn + 4,4,4,if (3.8)
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Series 4mm (4, A2 A2 AZA?)
Class 4mm
V =kfi + (4i+ A ) 2+ A4, (Ag+ A0 fs (3.9)

3

Class 4

V=V (dmm) 4 (AJ— A i) fa+ A A (Ad— AN fs+ A4, (40— AN kfs (3.10)
Series 4/mmm (A}, A2+ A2 A2AR)

Class &/ mmm

V= Akf1+ (A0 + A o+ AA (A + A1) s (3.11)

Class 422 (3.12)
V=V (&) mmm) + A, (A — A ) fo+ A, 4, (A3 — AN Kfs + A A 4, (40— A fe

Class 22m
V=V &/ mmm)+ A A)kfe+ A, (A + A0 fs + A A4, (41 Affs (3.13)
Class 4/ m
V=V &/ mmm) + (45— Aj) fa+ AA, (A5 — AJ) fo o+ A, AA, (A2 — A Kfy (3.14)

Class .4
V=V /m) (43— AN Kfr+ A A kfs+ A, (Ad— A fot

A (A + AJ) fot AAA, (AG+ AJ) fu+ 44,4, (AT — Af fa (315)
Series 3m (4, A+ A2 A3 —3434)

Class 3m
V=kh+(4i+ A+ (42— A2 +24,4.0) /s (3.16)

Class 3 (3.17)
V=V @m)+ (4j— A fo+ (A0 — 4% —24,4,)) fs + (4,3 — 34,4.2) kfs
Series B2m (43, A2+ A3 4,3 —34,42)
Class 62 m
V=Akh+(Ad+ A0+ (A5 — A% —24.45) fs (3.18)

Class 32 (:.3.19)
V=V (62m) 4+ A (A — AN fa+ A (A2 — A2+ 24, A0) fs+ (A2 — 3Ax“Au) kfs
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Class §
V=V (02m) 4 (A j— A ) fa 4+ (A 2] — A 2424, AJ) fs 4 A, (10— 3424 ) Kfs
' (3.20)

Class 6mm Series 6mm (Az, Ax2 + Auz’ Axn - 15_%4‘4“2 4+ iSAx2AH" 4 !/G)

V=kh+(4,i+A4)) i+ (A3 ~34,40(Ak—~AN 24490 (21)
Class 6

V=V (6mm) 4 (A j— A ) fo+ (A3~ 34,4 3 (A5 — A2+ 24,4 5 s+
+ (34,54, — 104,34 3+ 34,4 5) kfs (3.22)

Series 6/mmm (A2 A + A2 AS— 15424 2+ 15424 F — AL

Class &/ mmm
V = Ak +(A,i+ A“j) fo 4+ (A5 — BAxAuz) (A0 —A % — 2Ax,iyj) fs (3.23)

Class 6/ m
V =V (6/mmm)+(Aj— A0 fa+ (A2 —34,4 (A2 — A%+ 24,A40) fs +
+A4,(34,54,— 104,74 3+ 34,45 kfs (3.24)
Class 622
V=V 6/mmmn)+ 4, (A J— AJ) fa+ 4, (43~ 34,A (A0 — A0+ ZAxA.yi) Is-+
+ (34,54, — 104,34 3 +4- 34, A F) kfs (3.25)
Class 3m ]
V==V (6/mmm)+ A {42~ A2]+ 24,4} i+
+(A4,3— 34,24 ) kfs + A, (42— 3424 ) (4,1 + A ) e (3.26)
Class 3

V=V (3m)+ (4, j— A0 fr+ (4.2 — 34,4} kfs +
+ A (A2 — A2 — 24,4 ) o+ (A3 — 3AA D) (AL] — A ]+ 24, A1) fo+
A, (A3 — 34,4 %) (A3 + A ) fu+ 4,434, —10 AIAP + 34,4 5 kfn (3.27)

Series 43m (3A4,% 4.4 A4

A B4 24R)

Class 43m
V=240 + /T4 A1+ fs2 A (3.28)

Class 23 — .
* V=V(3m)+/fiI(4,2— 4,41+

+ S (AR~ A A AT LS (A2~ A,2) 4,0 (3.29)
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Series mim (XAZ2, 2.1 247, A 24 2A7)

Class mdm

Vo= ANAE LN E e fa (3.30)
Class m3d
V=V (mdm) - [1X (.1} — o %) A+ (3.31)
A 52 (2 — A2 A (S8 (2 — 1,2 foX A
Class 432
V=V (m3m)-- oS (A2 — A2 A, A5 +
T AN ASS (42— A2 4G+ AA AfeS (A2 A A (3.32)

4, Verifiocation of the solution, Having constructed expansions of the
form (2.9) for each class of crystal symmetry (formulas (3.1)-(3.32), it is
necessary to verify whether they satisfy the demands of uniqueness and poly-
nomial correspondence, i.e., whether they are solutions of the problem.

The uniqueness of the obtained modes of writing the vector functions
Vi Vi(A) is manifest in that the functions of the principal invariants
f,L in (2.13) are expressed uniquely in terms of the functions Vi(A). .
Let us examine the group(*) of each type separately.

If the crystallographic group G belongs to type (a), the proof of
uniqueness reduces to evaluation of the Jacobian aJi/aB‘, since Wy = JA
and A =1,2,3 , in this case. It is easy toverify by a direct computa-
tion that all such Jacobians for the type (a) groups are not zeroc (see
Section 3).

If the group ¢ belongs to type (b) or (c), , let us introduce a type
(a) group G* into the considerations, whose principal invariants agree with
the principal invariants of the group G.. Each type (a) group in the 1ist
of Section 3 is a group G* for the remaining groups in the same series.

A group G, belonging to type (b), is an invariant subgroup of index 2 of
its group G* . Let g be an element of the group G*, not in G, and g* A
and g“FVén the results of the transformation £", corresponding to the

element g, operating oh the vector A and the polynomial W} Evi-

) °
dently, g£°f=1 . Hence, from (1.2) we obtain a system of six linear

*) The word "group® here means the point group é¢orresponding to a given
class of crystal symmetry,
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equations in /,
ﬁ . . 6 S e 3 ~
21 Winfa =VH(4), 21 g Wi, =Vig A) (5.1}
o= o=

For this system to be solvable uniquely, its determinant should not be
zero, and this indeed holds for all type (b) groups.

A group- G, belonging to type (c), is an invariant subgroup of index & of
its G* group. Let us construct adjacent classes of the group (* by means
of the subgroup G and let us select elements &1r &21 E3 from the different

adjacent classes. Then f# is determined from the 12 linear equations
12 12
. - 3 N . n
2 Winfa =V'(4), 2 & Winfo=Ves ) (=123 (42
@ ==k g =1
The proof of uniqueness reduces to verifying that the determinant of this

system is non-gero.

Since Equations (2.10) are satisfied, the polynomial-correspondence
requirement is fulfilled if all members of degree ¢ in A are linearly
independent for any g. It is evidently sufficient to prove that the mem-
bers uo‘lf}L in the expansion (2.9) are linearly independent for any choice
of the 4& (understandably, it is assumed that none of these functions is
identically zero). But it is easy to see that the linear independence of
the functions O, f, follows for anEO from the fact that the &eterminants
of the systems of linear equations considered above are not zero. If one of
the functions j}1L is identically zero, it is necessary to prove the linear
independence of the remaining members. It follows from the fact that at
least one of the corresponding {m — 1)th order minors of the mentioned
determinant is not zero. Then, we can alsc consider the case when one more
function f, 1s identically zero (then {m — 2)th order minors are ex-
amined of the {m — 1)th order determinant), etc.

5. Example. Let us consider all the calculations in an example with

the class 42m, The XYZ Cartesian coordinate system is selected so that
204, X2 We find the invariants

1= A2, P=AL2+ A2 Pa=A2A % Pp=A,4,A4, (5.1)
in [4 and 6}

From [4] we write down the invariants of the vectors A and B, linear in
B,
Ji=A48, Je=AB,+ A48, Jo= A A B,
‘ (5.2)
J‘! =4,(4,B, + A;;Bx)’ Js = A, (AxBy -+ AUB:x-)
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The class 42m belongs to type (b); the degrees of the prinoipal in-
variants are 2,2,4. From (5.1) and (5.2) we obtain K = 6. We find the
denumerants D (g; 2, 2, 4), henceforth denoted by Dq, by a direct computa-
tion; the numbers r, are determined from (5.1) and (5.2); nq' are evaluated
in (2.9); the 7, are written down from [11]; the s, are evaluated from
(2.12). All the computations should be carried out to ¢g=6 . The ob-

tained results are presented here in the table.

g=0 1 2 3 4 5 6
D,=1 0 2 0 4 0 6
=0 2 212 2 1
ns=0 2 2 5 6 12 13
ng=0 2 2 5 5 10 10
s,=0 2 2 11 0 0

It hence follows that all the invariants  of degree (,1,2,3 in A
(together with the functions f, by which they are multiplied) remain in the
final expression for the invariant ¥;; all the invariants © of degrees 5
and 6 should be discarded; moreaver, it is necessary to discard one of the
fourth degree invariants: either ¥J, or YJ, . Since YW; =03,
precisely this invariant should be discarded. We finally obtain

¥ = fiJy + fada + foJs + foJs + fss + fe/s (5.3)

This agrees with (3.13). According to (2.13), the desired vector-

function YV (A) is V:x:=Axh+AyAzi‘+AxAy2f5+Ax’AvAz .

Vy= Afat A fot A fo+ 4404 (5.4)
V,=Af+ A At
Here 4 /mmm plays the part of the group G* . Reflection in a plane

perpendicular to the principal axis, say, g=m, , may be selected as the
element &' in the group 4/ mmm, but not in the group 42 m.. Evidently

V(m, A) =V (4,,4,, — 4)) Let vV (m A) = V*, Then the solution of
(4.1) is written thus:
; V,—V,* A V. +V,*)— Au v,+v.*
1= 2Az ) 2 — z(Axi_A“E)
V,+V,* A, (Vu — Vv') —A4,V— V. 55
fa=2A—xAu‘, fa= 2-42(-’4352_‘4,}) (5.5)
A, (V«u + V'y.) - Au Ve +V.™ i A, (Vo —V,*) — 4, (Vy—V,*)
fs=""944, (A7—A4)) ’ foe=""24A A (A7 —A))

6. Oonoluding remarks. The cobtained expansions are a riatural extension

of the inscriptions used in the phenomenological theories of an anisotropic
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continuum for the functional dependence between two vectors
Vi= Py PLal 4 PLAlAR | P ATAR A o (6.1)

The tensors P P, Pi,, Pikl, . .. are material tensors; they des-
cribe the properties of the medium and should be invariant relative to its
point group G..

In the generalization constructed here the properties of the medium are
described by the functions fp-’ The value of the uniqueness requirement is
that only if it is satisfied does it become possible to compare the proper-
ties of different materials. Hence, any method of writing the anisotropic
tensor functions of given symmetry may find practical application only under
the condition that it satisfies the uniqueness reguirement.

On the other hand, the polynomial-correspondence requirement has meaning
only if it is assumed in advance that the vector V is a whole rational

function of the vector A., Compliance with this requirement permits finding

all the tensors P ationce, in pnrticulari . s .(0) (6.2)
av* (0} ; 1 3*V*(0) : 3yt
i i 9 U v ) i > o¥v )
Pi=vi(0), Py=——5  Ply=7 iak =3 gaiodfodl '

a problem whose solution by another method would be very tedious for a tensor
P of high rank. In many theories of an anisotropic continuum it ia
actually assumed that the vector V is expanded in a series (6.1) in powers
of the components of the vector A, and then the method developed herein of
writing the vector functions V (A) 1is completely natural, and apparently
most convenient.

However, in some cases anisotropic functions must be considered which it
is not possible or convenient to expand in a series of the form (6.1) (dis-
gontinuous functions, functions with discontinuous derivatives, etc.). The
anisotropic vector functions constructed here may be used even in these
cases. Then fth in (2.9), (2.13) and (3.1) to (3.32) may be considered
arbitrary single-valued functions of their arguments. As before, the
uniqueness property is satisfied since the assumption that the 4; are poly-
nomials of their arguments is used only in the proof of the polynomial-
corrsspondence, but not in the proof of the uniqueness., Thus, the method
developed for writing the anisotropic vector functions is applicable even
in these mbre general theories, but it is now impossible to consider it

either natural or most convenient. For the mentioned theories it is more
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convenient at once to get rid of the polynomial-correspondence requirement
by replacing it with the demand that the desired vector function be repre-
sented as the sum of three linearly independent (in the geometric but not
the functional sense as in Sections 2 and 4) vector functions. The idea of
such a mode of writing arbitrary anisotropic functions has been expressed
in (1 and 2); its specific development might be the subject of a separate
publication.

The authors are deeply grateful to L. I. Sedov and V. V. Lokhin for
interest in the research and valuable critical remarks.
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