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The general Form of anisotropic vector functions of vector argument., com- 
patible with crystal symmetry. .is derived. The desired functions Vf = V* (A) 

are represented as vt = zI+$&,, where wjWj are some fixed 
polynomials of the componenta of the vector A. whose specific form is 
indicated for each class of crystal ayamsetry, and !, are arbitrary functions 
of three functionally independent invariants of the vector A relative to 
the point group corresponding to this class. The obtained expansions satisfy 
the uniqueness and polyn~~al.correapondenee requfrements. The former means 
that for given polynomials I*‘;II, 
by the functions $ 

the functions f, &re defined uniquely 

of their arguments 
; the latter mean6 that the functions f, are polynomiala 

A. 
ii’ the v’ are polynomials of the components of the ve’ctor 

These expansions are particularly convenient when the componenta of the 
rector-functions are polynomials of the components of the vector-argument. 

1.. ?ormuhtion of the problrm. Let a vector field dj, operate on a 

homogeneous anisotropic continuum with the result that another vector field 

vi = p (Ai) WI 
will originate in the medium, 

The anisotropic functions Fi are not completely arbitrary; they should 

be compatible with the symmetry of the medium(*). 

If the coordinate system is subjected to the transformation xi zzz xf(3?), 

where /jxi I dx”’ -_ai,;,, L the transformed components of the vectors A 

l ) SeeEl3 and121 for definitions of isotropic and anisotropic tensor 
functions and their properties. 
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In particular, if the transformation afp enters into the point sym- 

metry group G of’ the medium, equalities fl.1) and (1.2) are equivalent, 

This is the nccesaary and sufficient condition for the compatibility of the 

vector function Fi with the symmetry of the medium. 

Rivlin 133 indicated a method of construction of the functions F’, which 

are compatible with the given point symmetry group c of the medium. All 

linear invariants J,, + . . , .I[, relative to R should be selected from the 

entire rational basis of invariant8 of two vectora A and R relative to the 

group G (it may be found in [ 43 1. Any invariant of the vectors ti and B, 

which is linear in B, may be represented as 

(where @, are invariants of the vectorcA),, and any vector function of the 

vector A, which is compatible with t%e Bymmetry of the medium, as 

F’-g_ $@$ 
i A==1 i 

(1.4) 

(1.3) 

For practical application 5f anisotropic tensor functions ft is important 

that the following two conditions be satisfied 

1) Uniqueness - for a fixed choice of the invarianta Jh the functions 

@A should be defined uniquely by the functions F” . 

2) Polynomial correspondence - if Pi are polynomials of the components 

of the vector A, the functions @& should also be polynomials of their 

argument a l 

The functions F’ (A), constructed by Rivlin 131, eatisfy the second 

demand only. The aim herein is to construct anisotropic vector functions 

of a vector argument compatible rith the crystal symmetry and aatiefying 

both the mentioned denbandsf*). 

2. Lkthod oi molution, As is known [ 61, an arbitrary invariant @ of 

the vector A is written uniquely in one of three ways: 

(4 Q, = f @I1 Ipz* 93) 

ON @ = fo ~cp1* cp,, %) +W @I, 929 rp2) (24 

(4 0 = fo (CPI, cp,, %> + 5 Safa (911 ‘Jla, 9s) 
srl 

l ) This problem has been solved earlier [5] for functions compatible 
with the texture sy7matries. 
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Here 91, fp2l 9% are functionally independent basis invari8nt8 of th* 

vector A, tht! so-called principttl invariants; lfi, &,Y)~ are complementary 

basis invariants, i,e,, aXI the remaining invarianta 1~ the entire rational 

basis; f, ,fa, fi, fa am arbitrary functions of the principal invariants. 

Each of Formulas (2.3.) is valid for the crystallographic classes of type 

Cal, (b), (cf, rcspectivelyf*], 

Claasea of type 

1, M, mm2, 
Claaaea of type 

2, 2/m, 222, 
Cltks*es of type 

(a) 

mmm, 4mm, 4immm, 3m, Gmm, F2m, 6/mmm, ?i3m, m3m 
(bl 
4, Q/m, 422, ;fi2m,, 3, 32, 3m, $, 6, 6/m, 622, 23, m3, 432 
(0) 

1, 4, 3 

(2.3) 

(Cl + fn,u+ i %fA*.j JA 
T *=, 

These formulas may be combined 

where the notation 0 is Used for any factor with f, whether it has the form 

J or +I. Evidently L equals 1,2$,4d in cases (a>,(b) and (cl, res- 

pectively. 

Let f be an analytic function of it& arguments. Then 

(2.4j 
Pt=U p*=n PFO 

Bere ftiit 18 a polynomial in the principal invariants of the vector A, 

whose degree in A is y; tne real coefficients XP,1.,zp,7 are independent 

or A . In this case wan 63 is represented es ah infinite series 

'fc(,, + %,I + Y(Z) where YIClt is a linear polynomial in B and of power 

,$ in 0 

?P) 
* . 

r,,; =. P”, .;. j A & . I , Jd” 
rl 12.9 

*I The international notation of classes of crystal symmetry (gee fr], 
say1 am used here and henceforth. 
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Here is a tensor which is once contravariant, q times 

covariant, symmetric in all the convariant induces and invariant relative to 

the group G. AS iS known [8], the number of independent components of such 

a tensor is 

where N fG) is the arder of tfrt group c; X+- (b;) is the trace of the trans- 

formation matrix g from the group G; [xv’ll (9) is the tPaCt! of the Qth 

symmetric Kronecker power of the llamc matrix [9]. 

Let the degree of the principal invariant8 % (P2, (P3 relative to A 

be %t a21 a,. * The homogeneous polynomial f{(1) equals the sum of those 

membera of the triple series (2.4) for which PA + PC82 + Psas = 4, 

The number of such members equals the dtnumerant [IO) 

ff there are r9 invariants of zero degree in A; rl invariants of first 

degree in A, . . . , rh- invarianta of degree K in A, among the invariants WA 

then the number of term8 ol degree ‘q inA in (2.3) for 

mln w* 9) 

%I *= z Il’kL) (q-k; al, &Y 4 
L=O 

In general, &I* > n,; this means that not all the members of the sum 

(2.3) are independent, Let us assume*$hat there exists the expansion 

all of whose members are linearly independent while, however, satisfying the 

demand of polynomial correspondence ae does (2.3). 

Let sk be the number of members of the form G$& in this expansion, 

in which the factor 02. in of degree k relative to A. The numbers Q 

should satisfy the infinite System of SqUatiOnS 

rl 

x QD ((I -k; az, f-&z, us) = n, (q=O,1,2,...) (2.10) 
k=o 

Taking into account that D (0; aI, a%, as) = 1, the solution of this 

system is easily written down in the recursion form 
q-1 

SO = no, $0 = nq - r) St@ (“I - k al, %, %3) (q = 1,2,. . .) (2.11) 
k-t-l 
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On the other hand, Sk < rk , and Sk = 0, in particular if k > K. It 
hence sufficient to find sO, sir . . . , SIC. 

When these numbera have been found, three caaea are poaaible 

a) ?‘q=Sq, P> rq>sq = 0, T) ‘(r>%>O 
In case (a) all terms with factora o of degree q In A remain In the 

expansion (2.10). In case @) all such termr are discarded. In caee (Y) 

it is necessary to discard rP - SC, such termr. Terms nith ouch factor8 

(li, as may be represented in the form 6~ = Q1 @PI, ‘pz, ‘p&, -t . . . + Qm 
@PI, 'Pz, (P&h, *here up are factor8 with remainder term8 and 0, (cpl, cp2;, cp,) 

some polynomials of the principal invarianta, should be discarded here. 

The expansion (2.9) obtained after having discarded all excel8 members 

in the sum (2.31, and the corresponding Formula. 

solve the posed problem. We write (2.9) and (2.12) aa 

(2.12) 

(2.13) 

The number of member8 in these EIWM ia m = so + s1 f . . . + SK. 

On the other hand, a survey of the formulae presented in Section 3 show8 

that the number T?Z equals 3,6,12, respectively, for groups of types (a), 

(b) and (c). 

3. m fumotianr V(A) oompatlble with olyrtal VW. Here the 

vector-functions of a vector argument in the form 

are listed here for all classes of crystal symmetry. The formulas are 

written in a rectangular Cartesian XYZ coordinate syrtem with the direc- 

tions i, j, k. The orientation of the axes relative to the elements of 

crystal symmetry agrees with that propoaed by the IHE (‘1, with the excep- 

tion of classes 2, m and 21 m, in which 2 (12 or m-L? and class 62m, in 

which 2 II X, 6 IlZ. 

The classes for which the principal invariants of the vector are identical 

+) See [73. 
respectively . 

Appendix 2 where the axes are denoted by Ox,. 0x2, Ox3 
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are combimd in a reries, The designation of that single clam of type (o), 

which enterr into the CoInposition of the series, is ascribed to each series. 

The principal invariants of the vector A, i.t., the arguments of the 

arbitrary function8 f, which agret for all claaaes of the given aeriee, 

are indiCah?d In parentheses after the deslgnatlon of the SerleS. For example, 

(3.2) m~san8 

V = VI (A,, A,, A,9 + jf2 (A,, A,, Az2)+ A,kfs(A,, A,, kzz) 

For brevity, the W4ting of the ntembere which have already appeared in 

one of the preceding formulas ie denoted by the Symbols V (mm2), V (mmm) 

etc. For *XMlPlt, (3.4) should be resd a8 

V = kfl + A& + A& f A& i- A,Va + Q$,W 

where 

The symbol Z in the formulas for the serfte 43m and m3m means 

summation over the cyclic permutation of the Subscripts x* y, .z and the 

directions i, j, k. 

Series 1 (A,, A,, A,) 

Class 1 v = ifI -I- $2 C 4 (3.1) 

SerieS n: (A,, A,, Az2) 

Class m V = YI + jh f A$& G.2) 

Series mm2 (A,,Axz, AV2) 

Clam mm2 

V = kf~ 4 A& 4- A,iftt (3.3) 

Class 2 

Class mmm 

V = V (mm 2) -i- A,#4 + A# -I- A,Avkfa 

Series mmm (Ax%, Av2, A,?-) 

(34 

Clam 222 

V = A& + A&a + A,Ws (W 

V = V (mmm) + A,A,ifa + A,A& i- A&)& (3.6) 

Class 21 m 

V = V (mm) -I- A,jf~ -I- AblVa + A,A,A,kf~ (3.7) 

Clam5 i 
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Class 4mm 

V = Wi + (A,i + A,,j) ft + A,A, ( Aj + A,i) fa (3.9) 

Class 4 

v = v (4nzm) + (d,j-t$i)ja + AlAg (A.$-- A,j)fs+~Q$, Uf-Awa)kfs (3.40) 

Series $/mmm( A,*, Ax2 +Avz, Ax2AV2) 

Class 4 / mmm 

V fAzkfi.+tA,i+A~)fzfA,A,(A,j+Ayi)fs (3.11) 

Class i&m 

claaa 4) m 

V = V (4 /name) + (A,j - A$) j4 + AxAy (A$ - Avjl fa -t A,A,A, (Ax2 - $9 kfd (3-141 

Cla88 4: 

v=V(4/m)+(A,*- Ad, kf7 -f- A,-$,kh + -4, (A$ - -$,j) f~ + 

+ A, (f%j + A,i) fi0 + +$f$ (-49 + A,j) h + +Q+ (A,j - A,i) h (3.15) 

Class 3m 

V =WI+ (A,;+ AJj)f2 + (Axgi-Ayaj+ 2&4& fs (3.16) 

Class 3 
(3.17) 

Series E!m (A,", Ax*+Aga, A,*- 3A,Alla) 

Class Pi? m 



Class 6 

V = V(6~rm)+(A,j- A$) j, -t_ (A,"-33A,A1;2)(A,*j- Au2j+ 2fQ-4!J~15-f- 

f- (3‘4,54- 10.4~3~53 + 3A,A,,5) We (3.22) 

V = A,kk + (A,i 4 A!,.8 fe + (A,3a- 3A,Aua) (Ax2i - A1,2i - 2A,Ill,j)fs (3.23) 

Class 6/m 

V = V (6 / muma) + (A,j - A,i) fh + (A,3 - 3A,Au2) (Ax2j - Au2j + 2A,A,i) fs + 

+ A, (3Ax5Al, - foA,“A,9 + 3A/$,“) kfa (3.26) 

V = V (6 / mntnt) + R, (A,j - A,$) fr _t- -4, (A,3 - 3A,A,z) fA,*j - Avaj 3_ BA,A,i) 1’5 f 
* 

(3.25) -+ (3i4X5Ay - lOA,sA; + 3A,A,6) kfi, 

Class 3m 
V = V (6/ mmm) + A, (A,aj - Al:j + U,A,i) fa + 

-i- (A,,3 - ~~x2--$) kfs + A, (Aus - 3A,z-$,l (Axi + A,$ fe 

Class 3 

(3.26) 

V = V (3;n) + (AJ - A&) f7 + (-4,” - 3A,Ag2) kfs + 

Class 622 

+ A, (Ax2i - A,,2i - BA,A,j) fB + (A,* - 3A,Ay2) (dx2j - Al;“j + ZAfi,i) /lo $_ 

-t_ A, (~~3 - 3A,.41,2) (A$ + A41,j) fll + A, (3A,*d, - 10 .4,%4,s + 3A,A,3 kfi2 (3.27) 

Series Z3m @A,$, &-$,A,, XA112Az”) 

(3.29) 



LLioo:ropio Tootor rlmotioa or Tootor uw-5: 309 

5. Verlfloatlon of the roaution, Having constructed expansions of the 

form (2.91 for each class of crystal symmetry (formulas (3.1)-(3.32). it is 

necessary to verify whether they satisfy the demand% of uniqueness and poly- 

nomial correspondence, i.e., uhether they are solutions of the problem. 

The uniqueness of the obtained modes of wdting the vector functions 

vi = Vi(A) 5s manffeat in that the function% of the principal invariants 

fP in (2.13) are expreeeed uniquely in terms of the functions Vi(A). . 

Let u5 examine the group(*) of each type separately. 

If the crystallographic group C belongs to type (a), the proof of 

uniquenese, reduce% to evaluation of the Jacobian dJ,laBi, since wA = J, 

and A= 1,2,3 * in this case. It is easy toverify by a direct computa- 

tion that all such Jacobian6 for the type (a) groups are not zero (see 

Section 3). 

If the group G belongs to type fW or (cf, , let us introduce & type 

(a) group G* into the consideration%, whose principal invariants agree with 

the principal invariant% of the group c.. Each type (a) group in the list 

of Section 3 is a group G* for the remaining groups in the lame series. 

A group c, belonging to type (b), is an invariant subgroup of index 2 of 

ita group G* . Let g be an element of the group G*, not in G, and gnA 

and g”w(t, the Pesultn of the transformation g*, corresponding to the 

ole@ant g, operating on the vector A and the polynomial w:,, - hi- 

dently, g&f= f . Hence, from (1.2) we obtain a sy%tem of six linear 

*I The word “group* here means the point group oikesponding to a given 
elms of crystal ryamatry. 
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For this system to be solvable uniquely, its determinant should not be 

zero, and this indeed holds for all type (b) groups. 

A group G, belonging to type (cj, is an invariant subgroup of index 4 of 

its G* group. Let us conatruet adjacent classes of the group U* by mean5 

of the subgroup G and let us select elements &Tl- g2r g3 from the different 

adjacent classes. Then 

z IV;& = Vi (A), 

f, ia determined from the 12 linear equation8 

5 &“wf,,f,=vi(g,*Il) +=1,2,3) (4.2) 
g :_:I p. ==I 

The proof of uniqueness reduces to verifying that the determfnant of this 

system ia non-tero. 

Since Equetions !2.101 are satisfied, the polynomial-correspondence 

requirement is fulfilled if all members of degree Q in A art linearly 

independent for any g_ ft is evidently sufficient to prove that the mem- 

bers UbfF in the expansion (2.9) are linearly independent for any choice 

of the fF (understandably, it is assumed that none of these function8 is 

identically zero). But it is easy to see that the linear independence of 

the functions oIiflL , follows for f,+O from the fact that the determinants 

of the systems of linear equation8 considered above are not zero, If one of 

the function8 f, is identically zero, it is necessary to prove the linear 

independence of the remaining members, It follow8 from the fact that at 

least one of the corresponding fm - f)th order minors of the mentioned 

determinant is not zero. Then, we can also consider the case when one more 

function f, is identically zero (then b - 2) th order minors are ex- 

amined of the (m - l)th order determinant), etc. 

5. EawBplr * Let us consider all the calculations in an example with 

the class 42NZ. The XYZ Cartesian coordinate system is aelected 80 that 

% 113, XI/ 2. We find the invariants 

'pl = Az2, cpz = A," $-Ay2, 'p3 =AxL4U? I) - &$,A, (5.1) 

in 14 and 63 

From [43 we write down the invariant5 of the vector8 A and B, linear in 
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The class 62m belongs to type (b); the degrees ot the princiP81 in- 

varianta art 2,2,4. From (5.1) and (5.2) we obtain K = 6. We rind the 

dtnumtrant a D (9; 2, 2, 4), henceforth dtnoted by D,, by a direct coaputa- 

tion; the numbers rp arc dtttrmintd frcm (5.1) and (5.2); nq* are evaluated 

in (2.9); the nq are written down from bl] ; the sq are evaluated, from 

(2.12). All the computations should be carried out to q=6 . Theob- 

taintd results art presented hert in the table. 
q.=O i 2 3 4 5 6 

II,=1 0 2 0 4 0 6 

r,=O 2 2 1 2 2 1 

n*=O 2 2 5 6 12 13 

IL-0 2 2 5 5 10 IO 

s*=o221i 0 0 
It hence follow8 that’all tht invariant8 0 or degree 0,1,2,3 in A 

(together with tht function6 f, by which they are multiplied) remain in the 

final exprtssion for the invariant Y;; all the invariantr o of degroer 5 

and 6 should be discarded; mortavtr, it ir necerrary to diecard one ol the 

fourth degrte invariants: eithtr $JI or Wa . Since $JI = qlJa, 

precisely this invariant should bt dircarded. Ue iin8lly obt8in 

‘I’ = FIJI + fiJs + fsJs + f,Jd + fsJ, + i&Ja (5.3) 

This agrees with (3.13). According to (2.131, the derired W&Or- 

V, = A jz + A,A,fa + Ax2A js + A&&fa (5.4) 

V, = Azfl + A,/& 
Here 4 f mmm plays the part of the group G+ . Reflection in a plane 

perpendicular to the principal axis, say, g= m, , nay be releoted a8 the 

element g* in the group 4 1 mmm, but not in the group 42 m.. Evidently 

V (qz A) = V (A,, A,, - A,) 

(4.1) is writttn thus: 

rl_!!C& 

v, +;,* 

fa = ZAA, ’ 

Let V (m,A) = V*. Then the rolution of 

fz = 
A, O’, + V,‘) - A, N!, + VU*) 

2 (Ax2 - All*, 

fa = 

A, Vv - I$*) - A, (V, - v,*, 

2‘4, (A,” - A$, (5.5) 

A, cv, + VW*) - A, V, + v,*> A, (V, - V,*) - A, (V, - Vv*, 
fs = ZA,A,, (Axa - Ay2) ’ fs =- ZA,A@, (A,’ - A;) 

6. Qonoludlaa elm* The obtained expaneione are a titural extension 

or the inscriptions used in the phenorenological thtoriee of an anirotrepic 



continuum for the functional dependence between two vectors 

v’ = PC + PfjAj -j- Pfj&Ak + Pti,,AjAkA’ j ., l 

The tensor8 Pi. Pftt Pijk, Ptirtr , . - . are material tensors; they des- 

oribe the properties of the medium and should be invariant relative to its 

point grwp G, . 

Xn the gener8lfsation constructed here the properties of the medium are 

dewribed by the functions f,.. The value of the uniqueness requirement is 

that only if It ia satisfied doe8 it becowe possible to empare the proper- 

ties of different materials. Hence, any method of writing the anisotropic 

tensor function6 of given syxsaatry may find practical application only under 

the aondition that it 88tfsfies the uniqueness requirement. 

On the other hand, the polynoaoial-correspondence requirement has meaning 

only if it is 8rruaed fn advance that the vector V is a whole rational 

function of the vector A.. Colsplfance with this requirement perp#fts finding 

a11 the tensor8 P at once. in narticular: (6.2) 

a problem uhore aolution by another 

P of high rank. In mrny theoribs 

aaturlly assuasd that the vector V 

of the components of the vector A, 

writing the vector functions V (A) 

ro8t convenient. 

method would be very tedious for a tensor 

of an anisotropic continuum it is 

is expanded in a reries (6.11 in powers 

and then the method developed herein of 

is corapletely natural, and apparently 

Houever, in 8014 case8 anisotropic funotions must be considered which it 

is not posrible or convenient to expand in a series of the form (6.1) (dis- 

sontinuoua functions, functions rith discontinuous derivatives, etc.). The 

UkiaOtrOpiC vector function6 constructed hare may be used even in these 

oaIe8. Then f, in (2.9), (2.13) and 13.1) to (3.32) may be considered 

arbitrary single-valued function8 of their arguments. As belore, the 

uniqueness property i8 8atisfied since the assumption that the 1, are poly- 

n&al8 of their armants is used only in the proof of the polynomial- 

Eorrespondence, but not in the proof of the uniqueness. Thus, the method 

developed for writing the anisotropic vector function6 is applicable even 

in there mbre general theories, but it is nau impossible to consider it 

either natural or most convenient. For the mentioned theories it is more 
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convenient at once to get rid of the polynomial-correspondence requirement 

by replacing it with the demand that the desired Vector fUnCtiOn be repre- 

sented as the sum of three linearly independent (in the geometric but not 

the functional sense as in Sections 2 and 4) vector functions. The idea of 

such a mode of writing arbitrary anisotropic functions has been expressed 

in [l and 21; its speCific development might be the subject of a separate 

publication. 

The authors are deeply grateful to L. I. Sedov and V. V. Lokhin for 

interest in the research and valuable critical remarkr. 
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